基于椭圆曲线上离散对数难解问题,给出了公开可认证的门限秘密共享协议,提出了一种无需可信方D(dealer)的公开可验证的鲁棒DSS(l,n)-门限签名方案。该方案参与者不但可以验证自己的那份秘密份额的有效性,也能验证其他参与者所得份额的有效性(实际上任何人都可以验证每个秘密份额的有效性),且该方案所有通信都可在公共信道上进行,不需要使用安全的秘密通道,可防欺诈和数据误发。有此特性使该方案的鲁棒性更好,安全性更高,且更为简单有效。
In the paper, a non-interactive publicly verifiable threshold secret sharing scheme based on the intractable problem of discrete logarithm in elliptic curve is proposed. It designs a PVSS robust (l,n)-threshold DSS signatures without a trusted party. In this scheme, all people can authenticate the validity of their own and the others' secret information, (in fact, anyone can always authenticate the validity of each secret information) , and security secret channels for all communications which can carry out on public channel are not necessary. It can protect against the cheating action. The scheme may be more 'robust' and overcomes some demerits of the original ones.