对于二阶三点边值问题{x"(t)+f(t,x,x′)=0,0≤t≤1,x(0)=0,x′(1)=ax′(η),其中f:[0,1]×[0,∞)×R→[0,∞)是连续的,0〈α〈1,η∈(0,1),首先给出相应的Green函数,然后通过利用锥上的Krasnoselskii’s不动点定理的推广形式,赋予非线性项f一定的增长条件,保证至少1个正解的存在性。
For the second-order three-point boundary value problem{x"(t)+f(t,x,x′)=0,0≤t≤1,x(0)=0,x′(1)=ax′(η),f:[0,1]×[0,∞)×R→[0,∞)is continuous,0〈α〈1,η∈(0,1),The associated Greenrs function for the above problem is given first,and then, by using the extension of Krasnoselskii's fixed point theorem in a cone, growth conditions are imposed on nonlinearity f which ensure the existence of at least one positive solution.