为综合的一个过程 Fe 2 O 3 基于 electrospinning 和难模板的方法被建议以便 Fe 2 O 3 能与精确被定制。Mesoporous -Fe2O3,-/-Fe2O3, 和 -Fe2O3 nanofibers 能被改变合成参数成功地制作。扫描电子显微镜学,传播电子显微镜学, X 光检查衍射分析,拉曼光谱学,和氮 adsorptiondesorption 分析被用来描绘综合产品的结构。为与最高的乙醇反应准备 -/-Fe2O3 nanofibers 的最佳的锻烧条件通过察觉到乙醇的大小被决定。混合阶段材料比相应 purephase 展出了显著地更高的敏感。-/-Fe2O3 nanofibers 的优异察觉到乙醇的表演建议他们可能对在察觉到的酒精的使用合适。因此,为改进金属氧化物半导体的察觉到的表演的新奇策略是在一结构装配一样的金属氧化物的不同水晶的形式。最后,为比 -Fe2O3 和 -Fe2O3 的那些高的 -/-Fe2O3 的察觉到的性能负责的机制从 X 光检查光电子光谱学和抵抗大小根据数据被阐明。
A process for synthesizing Fe2O3 based on electrospinning and the hard-template method was proposed such that the crystal phase of Fe2O3 could be tailored with precision. Mesoporous γ-Fe2O3, α-/γ-Fe2O3, and α-Fe2O3 nanofibers could be fabricated successfully by changing the synthesis parameters. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction analyses, Raman spectroscopy, and nitrogen adsorption-desorption analyses were used to characterize the structures of the synthesized products. The optimal calcination conditions for preparing α-/γ-FeaO3 nanofibers with the highest ethanol response were determined through ethanol-sensing measurements. The mixed-phase material exhibited a significantly higher sensitivity than the corresponding purephase ones. The superior ethanol-sensing performance of the α-/γ-Fe2O3 nanofibers suggested that they may be suitable for use in alcohol sensing. Hence, a novel strategy for improving the sensing performance of metal oxide semiconductors is to assemble the different crystalline forms of the same metal oxide in one structure. Finally, the mechanism responsible for the sensing performance of α-/γ-Fe2O3 being higher than those of γ-Fe2O3 and α-Fe2O3 was elucidated on the basis of data from X-ray photoelectron spectroscopy and resistance measurements.