提出了一种工作在太赫兹频段,基于半导体材料锑化铟的超材料带阻滤波器.由于锑化铟材料介电常数的特性,该滤波器的谐振频率能够进行温度调节.同时,通过有限积分法和等效LMC电路模型分析了滤波器的几何参数对其谐振频率的影响,这两种方法得到的结果具有良好的一致性.在温度的取值范围是220~350K时,滤波器的谐振频率能够从0.91 THz动态调节到1.28 THz,并且其阻带谐振频率的透射系数能够有限地被抑制.该滤波器的传输特性在30°入射角范围内具有良好的稳定性.设计的可调超材料带阻滤波器将在太赫兹无线通信、传感等方面有潜在的应用前景.
A metamaterial band-stop filter in the Terahertz(THz) spectrum regime based on the semiconductor InSb is presented in this paper. The resonant frequency of the filter is thermally tunable due to the dielectric con- stant properties of InSb. Meanwhile, the effects of geometrical parameters on the performance of the filter were an- alyzed by the finite-integral method and equivalent LMC circuit method, respectively. The results of the two meth- ods show good agreement with each other. The resonant frequency can be dynamically tuned across a wide band of frequencies from 0.91 to 1.28 THz in the temperature range from 220 K to 350 K, and the transmission coefficient at the resonant frequency in the stopband can be effectively suppressed. Good incidence-angle stability of the trans- mission characteristics up to an oblique incidence angle of 30% is demonstrated. The tunable metamaterial band-stop filter has the potential to be applied in the Terahertz wireless communication and sensing systems.