位置:成果数据库 > 期刊 > 期刊详情页
MobSafe:Cloud Computing Based Forensic Analysis for Massive Mobile Applications Using Data Mining
  • ISSN号:1007-0214
  • 期刊名称:Tsinghua Science and Technology
  • 时间:2013.8.15
  • 页码:418-427
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术] TN929.5[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]Department of Computer Science and Technology and Tsinghua National Laboratory for Information Science and Technology (TNList),Tsinghua University Beijing 100084, China., [2]Department of Electronic Engineering and Tsinghua National Laboratory for Information Science and Technology (TNList),Tsinghua University', Beijing 100084,China., [3]Research Institute of Information Technology and Tsinghua National Laboratoryfor Information Science and Technology (TNList),Tsinghua University Beijing 100084, China., [4]Department of Computer Science and Technology,Research Institute of Information Technology and Tsinghua National Laboratory for Information Science and Technology (TNList),Tsinghua University , Beijing 100084, China.
  • 相关基金:the National Key Basic Research and Development (973) Program of China (Nos. 2012CB315801 and 2011CB302805); the National Natural Science Foundation of China (Nos. 61161140320 and 61233016); Intel Research Council with the title of Security Vulnerability Analysis based on Cloud Platform with Intel IA Architecture
  • 相关项目:下一代互联网安全与隐私关键性技术的研究
中文摘要:

With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Internet, the apps replace the PC client software as the major target of malicious usage. In this paper, to improve the security status of current mobile apps, we propose a methodology to evaluate mobile apps based on cloud computing platform and data mining. We also present a prototype system named MobSafe to identify the mobile app’s virulence or benignancy. Compared with traditional method, such as permission pattern based method, MobSafe combines the dynamic and static analysis methods to comprehensively evaluate an Android app. In the implementation, we adopt Android Security Evaluation Framework (ASEF) and Static Android Analysis Framework (SAAF), the two representative dynamic and static analysis methods, to evaluate the Android apps and estimate the total time needed to evaluate all the apps stored in one mobile app market. Based on the real trace from a commercial mobile app market called AppChina, we can collect the statistics of the number of active Android apps, the average number apps installed in one Android device, and the expanding ratio of mobile apps. As mobile app market serves as the main line of defence against mobile malwares, our evaluation results show that it is practical to use cloud computing platform and data mining to verify all stored apps routinely to filter out malware apps from mobile app markets. As the future work, MobSafe can extensively use machine learning to conduct automotive forensic analysis of mobile apps based on the generated multifaceted data in this stage.

英文摘要:

With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Internet, the apps replace the PC client software as the major target of malicious usage. In this paper, to improve the security status of current mobile apps, we propose a methodology to evaluate mobile apps based on cloud computing platform and data mining. We also present a prototype system named MobSafe to identify the mobile app's virulence or benignancy. Compared with traditional method, such as permission pattern based method, MobSafe combines the dynamic and static analysis methods to comprehensively evaluate an Android app. In the implementation, we adopt Android Security Evaluation Framework (ASEF) and Static Android Analysis Framework (SAAF), the two representative dynamic and static analysis methods, to evaluate the Android apps and estimate the total time needed to evaluate all the apps stored in one mobile app market. Based on the real trace from a commercial mobile app market called AppChina, we can collect the statistics of the number of active Android apps, the average number apps installed in one Android device, and the expanding ratio of mobile apps. As mobile app market serves as the main line of defence against mobile malwares, our evaluation results show that it is practical to use cloud computing platform and data mining to verify all stored apps routinely to filter out malware apps from mobile app markets. As the future work, MobSafe can extensively use machine learning to conduct automotive forensic analysis of mobile apps based on the generated multifaceted data in this stage.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《清华大学学报:自然科学英文版》
  • 主管单位:教育部
  • 主办单位:清华大学
  • 主编:孙家广
  • 地址:北京市海淀区清华园
  • 邮编:100084
  • 邮箱:journal@tsinghua.edu.cn
  • 电话:010-62788108 62792994
  • 国际标准刊号:ISSN:1007-0214
  • 国内统一刊号:ISSN:11-3745/N
  • 邮发代号:82-627
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘
  • 被引量:323