隧道的顺序施工叠加岩石流变特性,使围岩和衬砌的力学状态与时间相关。针对水平和竖向地应力不相等的一般地应力条件下双层衬砌圆形隧道施工问题,采用复变函数方法和Laplace变换,推导了开挖和支护全施工过程任意时刻围岩、衬砌的位移和应力理论解答。理论推导中用任意黏弹性模型模拟岩石流变特性,并在隧道开挖完成后的任意时刻分别施加一次衬砌、二次衬砌。并与相同条件下有限元解进行了比对。为便于工程设计,基于本文时效理论解,通过衬砌压力的机理分析,运用数据拟合的方法,给出了围岩压力分担的简便计算法,公式形式简单、适用范围广,同时也可以实现解析解的类似精度,为科学合理确定二次衬砌施工方案提供了理论依据。结合一算例,针对不同围岩压力分担情况,分别给出二衬施加时刻和二衬厚度建议值。工程中可据此方便、快捷地进行相似工程条件下的初步设计。
The time-dependency in tunneling is mainly due to the tunnel construction processes and rheological properties of the rock. By using the complex potential theory and Laplace transform technique, analytical solutions are derived for the double-liner circular tunnels constructed in rheological rock subjected to non-hydrostatic initial stresses. In the derivation, several linear viscoelastic models are adopted to analyze the theological properties of the host rock, and the first and secondary liners are sequentially installed at any time after the excavation. The solutions are validated by finite element analyses. Based on the analytical solutions, a simple method for determination of supporting pressure provided by the two liners is proposed by using the data fitting method. The result shows that the fitting precision is very high. The formulas for supporting pressure herein are very simple, and very convenient for using in the engineering. This method gives an optional way in the design of the secondary linings. Using this method, the suggested installation time and thickness of the secondary linings corresponding to different values of supporting pressure are provided for a specified example. The solutions in this paper provide a much convenient way for the preliminary design of tunnel construction.