建立一个集中紧性原理,利用这一原理解决了约束极大值M:=sup{∫RN|u|^qdx,u∈W^1,p(R^N),∫RN(|△↓u|^p+|u|^p)dx=1}的可达性,得到了拟线性椭圆方程-△pu+|u|^(p-2)u=|u|^(q-2)u,u∈W^1,p(R^N),1<p<N,p<q<Np/N-p的最小能量解.
Formulate a concentration-compactness principle. Then solve the constrained maximal problem M:=sup{∫RN|u|^qdx,u∈W^1,p(R^N),∫RN(|△↓u|^p+|u|^p)dx=1} via the concentration-compactness principle. And get the least energy solution of the quasilinear elliptic equation -△pu+|u|^(p-2)u=|u|^(q-2)u,u∈W^1,p(R^N),1〈p〈N,p〈q〈Np/N-p.