位置:成果数据库 > 期刊 > 期刊详情页
改进购物篮分析的关联规则挖掘算法
  • ISSN号:1000-582X
  • 期刊名称:《重庆大学学报:自然科学版》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]合肥工业大学计算机与信息学院,安徽合肥230009
  • 相关基金:国家自然科学基金资助项目(60273044);安徽省自然科学基金资助项目(01042201,050420207)
中文摘要:

基于改进传统购物篮分析的关联规则挖掘是在数据处理时引入兴趣度加权的思想,将所有交易中同一类商品的交易量进行归一化处理,根据用户领域知识的要求,计算该类商品的兴趣度加权阈值,从而改进传统的购物篮分析,使所挖掘出的关联规则符合实际,同时减少关联规则挖掘的工作量,提高规则挖掘的效率和准确性.

英文摘要:

Association rules mining based on improved traditional market basket analysis is that we introduce the idea of interest-weighed into data processing, normalize the amount of the same kind of commodity purchased by customers in all transactions. According to the demand of users' domain knowledge, we can calculate the interest-weighed threshold, then improve the traditional market basket analysis, association rules are mined much more practical, the workload of association rules mining has been reduced, the efficiency and veracity of association rules mining are improved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《重庆大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:重庆大学
  • 主编:王时龙
  • 地址:重庆市沙坪坝正街174号
  • 邮编:400044
  • 邮箱:cdxhz@equ.edu.cn
  • 电话:023-65102302
  • 国际标准刊号:ISSN:1000-582X
  • 国内统一刊号:ISSN:50-1044/N
  • 邮发代号:78-16
  • 获奖情况:
  • 中国高校精品科技期刊,重庆市一级期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:26478