位置:成果数据库 > 期刊 > 期刊详情页
基于单形正交实验设计的差分演化算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]华南农业大学数学与信息学院,广州510642, [2]江西理工大学信息工程学院,江西赣州341000
  • 相关基金:国家自然科学基金资助项目(61573157); 广东省自然科学基金资助项目(2014A030313454,2015A030313408)
中文摘要:

为了克服传统差分演化(DE)算法在求解约束优化问题时出现的收敛性慢和容易陷入早熟等缺陷,提出一种新的基于单形正交实验设计的差分演化(SO-DE)算法。该算法设计了一种结合单形交叉和正交实验设计的混合交叉算子来提高差分演化算法的搜索能力;同时采用了一种改进的个体优劣比较准则对种群个体进行比较和选择。这种新的混合交叉算子利用多个父代个体进行单形交叉产生多个子代个体,从两者中选择优秀个体进行正交实验设计得到下一代种群个体。改进的个体优劣比较准则对不同状态下的种群采用不同的处理方案,其目的在于能够有效地权衡目标函数值和约束违反量之间的关系,从而选择优秀个体进入下一代种群。通过对13个标准测试函数和2个工程设计问题进行仿真实验,实验结果表明SO-DE算法求解的精度和标准方差都要优于HEAA算法和COEA/OED算法。SO-DE算法具有更高的精度以及更好的稳定性。

英文摘要:

Focusing on the defects, such as slow convergence and premature phenomenon, in solving constrained optimization problems by the traditional Differential Evolution( DE) algorithm, a novel DE based on Simplex-Orthogonal experimental design( SO-DE) algorithm was proposed. The algorithm designed a new hybrid crossover operator that combined simplex crossover and orthogonal experimental design to improve the search ability of DE algorithm, and the improved comparison criteria was used to compare and select the individuals of population. Several parent individuals were used to produce multiple offspring individuals by simplex crossover in the new hybrid crossover operator, then the multiple excellent individuals, which were selected from two set by orthogonal experimental design, were copied in the next generation. Different treatment schemes were used for different stages of population in the improved comparison criterion, which aimed to effectively weigh the relationship between the value of the objective function and the degree of constraint violation, thus better individuals were chosen into the next generation. Simulation experiments were conducted on 13 standard test functions and 2 engineering design problems. The SO-DE algorithm is much better than HEAA( Hybrid Evolutionary Algorithm and Adaptive constrainthandling technique) and COEA / ODE( a novel Constrained Optimization Evolutionary Algorithm based on Orthogonal Experimental Design) in terms of the accuracy and standard variance of final solution. The experimental results demonstrate that the SO-DE algorithm has better accuracy and stability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679