设(X,‖·‖)为可分的Banach空间,X^*为其对偶空间,X^*可分,(Ω,B,P)为完备的概率空间,{Bn,n≥1}为B的上升子σ域族,且B=VBn.在X^*可分的条件下给出了集值Pramart的鞅逼近,并在此基础上证明了集值Subpramart在弱收敛意义下的收敛定理及Pramart在Kuratowski-Mosco收敛意义下的收敛定理.
On the basis of letting (X, ‖·‖ ) will be a real separable Banach space with the dual X^*, (Ω,B,P) be a complete probability space, further, {Bm,n≥1 } be a increase sub σ-fields filtration of B, and B = V Bn, the properties of set-valued Pramart are discussed, including its in means weak and Kuratowski-Mosco convergence theorem.