位置:成果数据库 > 期刊 > 期刊详情页
支持向量回归模型在曲线光顺拟合中的改进
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国农业大学理学院,北京100083
  • 相关基金:国家自然科学基金资助项目(编号:10371131)
中文摘要:

几何逆向工程中的光顺曲线重构问题本质上属于回归问题。支持向量回归机是求解回归问题的新的十分有效的方法。论文研究用支持向量回归机处理光顺曲线的重构问题。鉴于后者有着对于光顺性的特殊要求,已有的支持向量机并不适用。通过修正惩罚因子对支持向量机加以改造,即根据测量数据点的分布情况,利用各测量点圆率的特性确定对应的惩罚因子,从而实现了自由曲线的光顺重构。数值试验表明新方法可以剔除输入数据中不光顺点的影响,并在给定的精度条件下有效地逼近曲线,达到较好的拟合效果。

英文摘要:

The problem of construction of smoothing curve is actually regression problem.The support vector machine (SVM) is a very effective method for regression issue.How to use SVM to solve the problem of curve smoothing reconstruction in reverse engineering is discussed in this paper.Whereas SVM is not suitable for the smoothing regression,a modified support vector regression model is proposed.The optimization problem and its dual formula are described.The parameter C of every point is redefined by the character of round curvature.Through an example,the robust is compared among different methods.The results show that the smoothness of curves fitted by modified method is better than by the former SVM model,when there are some bad measure points in the datum.

同期刊论文项目
期刊论文 31 会议论文 18 著作 1
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887