位置:成果数据库 > 期刊 > 期刊详情页
半流的原像熵
  • ISSN号:2095-2651
  • 期刊名称:《数学研究及应用:英文版》
  • 时间:0
  • 分类:O193[理学—数学;理学—基础数学]
  • 作者机构:[1]河北师范大学数学与信息科学学院,河北石家庄050016
  • 相关基金:Foundation item:the Tianyuan Mathematics Foundation of China(10426012);the Doctoral Foundation of Hebei Normal University(L2005802).
作者: 张金莲[1]
中文摘要:

本文对紧致度量空间上的连续半流引入了几类原像熵的定义,并对它们的性质进行了研究.证明了对于无不动点的连续半流而言,这些熵具有一定程度的拓扑共轭不变性,对这些熵的关系进行了研究并得到了联系这些熵的不等式,还证明了连续半流与其时刻1映射具有相同的拓扑熵和原像熵。

英文摘要:

In this paper, several preimage entropies for semi-flows on compact metric spaces are introduced and studied. We prove that most of these entropies are invariant in a certain sense under conjugacy when the semi-flows under consideration are free of fixed points. The relation between these entropies is studied and an inequality relating them is given. It is also shown that most of these entropies for semi-flow are consistent with that for the time-1 mapping.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学研究及应用:英文版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:大连理工大学
  • 主编:王仁宏
  • 地址:大连理工大学应用数学系
  • 邮编:116024
  • 邮箱:
  • 电话:0411-84707392
  • 国际标准刊号:ISSN:2095-2651
  • 国内统一刊号:ISSN:21-1579/O1
  • 邮发代号:8-92
  • 获奖情况:
  • 1998年大连市优秀期刊奖,2000年大连市优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:36