相移控制能有效的避免孤子间的相互作用.通过利用符号计算和双线性方法,本文解析研究用于描述色散渐变光纤传输特点的非线性Schrodinger方程,并得到该方程的双孤子解.基于所得到的双孤子解,通过研究发现,当色散渐变光纤中的群速度色散呈Gauss型变化时,可以利用该类光纤实现孤子相移控制,从而避免孤子相互作用,提高光通信系统中信号传输质量.此外,本文还将讨论色散渐变光纤中各类参数对相移控制的影响.本文结论还有助于逻辑门和全光开光的研究.
Phase-shift control can effectively avoid soliton interactions. With symbolic computation and Hirota's bilinear method, analytic studies are made on nonlinear Schrodinger equation, which can be used to describe the propagation of solitons in dispersion decreasing fibers. Analytic two-soliton solutions are obtained. With the obtained solutions, when the variable groupvelocity dispersion function of dispersion decreasing fibers is a Gaussian one, the phase-shift control is achieved, soliton interactions are avoided, and the pulse quality in optical communication systems can be improved. Moreover, influences of parameters in dispersion decreasing fibers on the phaseshift control are discussed. Results are also helpful for the logic gates and optical switches.