华北平原水资源不足影响农业和经济的可持续发展,威胁国家的粮食安全。有效地预测区域的蒸散量和用水效率是合理配置农业和生态用水的前提。本文发展了一个基于遥感植被指数的蒸散和植被生产力模型,利用MODIS遥感信息模拟了华北平原2000-2009年的蒸散和第一性生产力(GPP)。结果表明,年和生长季累积蒸散和GPP的分布具有纬度地带性,冬小麦季则更为明显。水分盈亏分析表明,降水显著低于蒸散的地区主要分布在黄河流域以北,南部地区降水有盈余。年尺度上,黄河以北地区水分亏缺0~300mm;在小麦生长发育期,几乎全区水分亏缺0~400mm;在玉米生长发育期,黄河以北地区水分亏缺0~100mm。此外,蒸散和GPP的年际变化明显,既受气候波动的影响,也受植被的动态响应调节。
Insufficient water resources is a major constraint on sustainable development of agriculture and socio-economy, and an imminent threat to national food security. Present situation attached particular importance to assurance of water supply for agriculture and ecology, which was on the basis of effective predication for regional evapotranspiration and water use efficiency (WUE). In this paper, an evapotranspiration and gross primary production (GPP) model based on vegetation index from Terra-MODIS was developed, and evapotranspiration and GPP in the North China Plain (NCP) during the period 2000-2009 were simulated. Results indicated that longitudinal trend was noticeable for both evapotranspiration and GPP distribution, especially in winter wheat growing season. With respect to water balance, it is concluded that regions with higher evapotranspiration than precipitation were mainly distributed to the north of the Yellow River, while the southern NCP showed a rainfall surplus. Affected and regulated by both climatic fluctuation and dynamic response of vegetation, both evapotranspiration and GPP illustrated considerable inter-annual variation. The research results can provide guidance to assessment of water consumption for ecological environment and water use efficacy.