位置:成果数据库 > 期刊 > 期刊详情页
多方面属性归一化三维张量模型在区域旅游酒店的推荐应用
  • ISSN号:1671-1815
  • 期刊名称:《科学技术与工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]玉林师范学院计算机科学与工程学院,玉林537000, [2]怀化学院计算机科学与工程学院,怀化418000, [3]武汉大学计算机学院,武汉430072
  • 相关基金:国家自然科学基金(61272109)、 广西高校科学技术研究项目(KY2015LX298)、 湖南省教育厅科学研究项目(15C1086)、玉林师范学院校级科研项目(2013YJYB12)资助
中文摘要:

为游客个性化推荐理想酒店是旅游质量得以保障的手段之一。首先运用形式化方法将游客、酒店以及游客对酒店的评分从多方面属性综合进行量化与归ー化,得到归一化的酒店因子、游客因子和评分因子;然后,采用一种有偏加权函数计算出一种有偏推荐度,与酒店、游客和评分等因子一起构建了一种以"酒店辟客4平分荐度"四元关系的三维张量模型,有偏推荐度作为张量元素值;最后,采用基于Tucker分解法的算法实现了在高度稀疏的四元关系数据集上按游客分类的有偏性旅游酒店推荐。实验结果表明,采用三维张量模型及算法能实现对高度稀疏的区域旅游酒店数据进行精准旅游酒店推荐,为游客根据个人偏好获得个性化的酒店推荐找出了一种新的方法,有效提高了旅游质量。

英文摘要:

Recommending the ideal hotel for tourists, this is one of the means to ensure the quality of tourism.The normalized hotel factor, tourist factor and evaluation factor,were firstly obtained by using the formal method to quantify and normalize the tourists, hotels and evaluation with multiple attributes.Then,a partial weighting function was defined to calculate the degree of partial recommendation, with the factor of the hotels, tourists and evaluation together to build a triple-dimensional tensor based on 4-tuples relation model including hotel, tourist, evaluation and degree of recommendation, using the degree of recommendation as tensor elements.Finally,a decomposition algorithm based on Tucker was proposed to achieve tourism hotel partial recommendation by tourists classified in a higher-sparse 4-tuples relation data set.Experiments show that the triple-dimensional tensor mode and the algorithm can achieve high accuracy for tourist hotel recommendation in higher sparse regional data set, it is based on personal preferences of tourists to get personalized hotel recommended to find a new way to improve the quality of tourism.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《科学技术与工程》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国技术经济学会
  • 主编:明廷华
  • 地址:北京市学院南路86号
  • 邮编:100081
  • 邮箱:ste@periodicals.net.cn
  • 电话:010-62118920
  • 国际标准刊号:ISSN:1671-1815
  • 国内统一刊号:ISSN:11-4688/T
  • 邮发代号:2-734
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:29478