设d是一个正整数,N^d是d-维正整数格点.设{xn,n∈N^d)是一同分布的负相伴随机场,记Sn=∑Xk,Sn^(k)=Sn-Xk,如果r〉2,EX1=0和σ^2=Var(X1),则存在一个正数M:=100根号(r-2)(1+σ2)使得下列条件等价 (I) E︱X1︱^r(log︱X︱)^d-1-r/2〈∞; (Ⅱ) ∑︱n︱^r/2-2P(max︱Sn^(k)︱≥(2^d+1)ε根号︱n︱log︱n︱)〈∞,Vε〉M; (Ⅲ) ∑︱n︱^r/2-2P(max︱Sk︱≥ε根号︱n︱log︱n︱)〈∞,Vε〉M.
Let d be a positive ingter and N^d denote the d-dimensional lattice of positive integers. Let {xn,n∈N^d) be a same distribution NA random fields, put Sn=∑Xk,Sn^(k)=Sn-Xk, if r〉2, EX1=0 and σ^2=Var(X1),then there exists a positive constant such that the following is equivalent: (I) E︱X1︱^r(log︱X︱)^d-1-r/2〈∞; (Ⅱ) ∑︱n︱^r/2-2P(max︱Sn^(k)︱≥(2^d+1)ε ︱n︱log︱n︱)〈∞,Vε〉M; (Ⅲ) ∑︱n︱^r/2-2P(max︱Sk︱≥ε ︱n︱log︱n︱)〈∞,Vε〉M.