Monodisperse NiO nanocrystals with an average particle size of 3 ± 0.4 nm are successfully synthesized by the thermal decomposition of Ni-oleylamine complex in an organic solvent under a continuous O2 flux. The crystalline structure and the morphology of the product are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Magnetization and alternating-current (ac) susceptibility measurements indicate that the structure of the particles can be considered as consisting of an antiferromagnetically ordered core and a spin-glass-like surface shell. In addition, both the exchange bias field and the vertical magnetization shift can be observed in this system at 10 K after field cooling. This observed exchange bias effect is explained in terms of the exchange interaction between the antiferromagnetic core and the spin-glass-like shell.
Monodisperse NiO nanocrystals with an average particle size of 3 -h 0.4 nm are successfully synthesized by the thermal decomposition of Ni-oleylamine complex in an organic solvent under a continuous 02 flux. The crystalline structure and the morphology of the product are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Magnetization and alternating-current (ac) susceptibility measurements indicate that the structure of the particles can be considered as consisting of an antiferromagnetieally ordered core and a spin- glass-like surface shell. In addition, both the exchange bias field and the vertical magnetization shift can be observed in this system at 10 K after field cooling. This observed exchange bias effect is explained in terms of the exchange interaction between the antiferromagnetie core and the spin-glass-like shell.