位置:成果数据库 > 期刊 > 期刊详情页
基于内容图像检索中的优化鉴别特征
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]首都师范大学信息工程学院,北京100048, [2]北京交通大学计算机与信息技术学院,北京100044, [3]内蒙古自治区人民检察院技术处,呼和浩特010050, [4]中国科学院计算技术研究所智能信息处理重点实验室,北京100190
  • 相关基金:国家自然科学基金(60933004,61035003,60903141,61072085);国家“九七三”重点基础研究发展计划项目(2007CB311004).
中文摘要:

为了提高基于内容图像检索系统的检索速度和准确率,提出一种融合两类线性鉴别分析的方法来提取低维的优化鉴别特征.首先把多类问题转换为多个两类问题,对每个两类问题进行线性鉴别分析,得到鉴别向量;所有的鉴别向量组成鉴别变换矩阵,对图像特征进行投影变换得到鉴别特征;最后用变换后的鉴别特征进行图像检索或分类,得到准确率更高的结果.该方法中鉴别特征空间的维数与类别数相等.与多种特征优化方法进行比较的实验结果表明,采用文中方法可以显著地提高图像检索和图像分类的性能.

英文摘要:

In this paper, a method merging 2-class linear discriminant analysis is proposed to capture low-dimensional optimal discriminative features to improve the searching speed and precision of content-base image retrieval systems. First, a multi-class problem is translated to multiple 2-class problems with linear discriminant analysis to estimate a discriminant vector for each. Second, all the discriminant vectors are merged into a discriminant transformation matrix, by which image visual features are transformed into discriminant features. Finally, the discriminant features are employed to gain high precision of image retrieval and classification. The dimensionality of the discriminant features corresponds to the number of classes involved. The experiments, in which our proposed method is compared with various feature optimizing methods, show that the proposed approach improves the performance of image retrieval and classification dramatically.

同期刊论文项目
期刊论文 172 会议论文 96 获奖 10 专利 3 著作 7
期刊论文 74 会议论文 88 专利 1 著作 2
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752