设G是一个n阶2-连通图,整数a,b满足2≤a〈b,g(x)和f(x)是定义在V(G)上的两个非负整数值函数,使得任意x∈V(G),满足a≤g(x)〈f(x)≤b。证明了G有哈密顿(g,f)-因子,如果G的最小度数满足:δ(G)≥(b-1)^2-(a-1)(b-a)/(a-1),n〉(a+b-3)(a+b-2)/(a-1),且max{dG(x),dG(y)}≥((b-1)n/(a+b-2)对G中任意两个不相邻的顶点x,y都成立。
Let G be a 2-connected graph of order n,and let a and b be integers such that 2≤a〈b,and let g(x) and f(x) be two nonnegative integer-valued functions defined on V(G) such that a≤g(x)〈f(x)≤b for each x∈V(G).It is proved that G has a Hamiltonian(g,f)-factor if the minimum degree of G satisfies the following conditions,δ(G)≥(b-1)^2-(a-1)(b-a)/(a-1),n〉(a+b-3)(a+b-2)/(a-1),and max{dG(x),dG(y)}≥((b-1)n/(a+b-2) for any two nonadjacent vertices x and y in G.