在可分距离空间的框架下给出了Benson真有效点的标量化定理,再把此定理运用于几乎次类凸集值映射向量优化问题中,得到Benson真有效解的标量化定理、Lagrange乘数定理和对偶性定理.
In the framework of separable metric spaces,we give scalarization theorems on Benson proper efficiency. Applying the results to vector optimization problems with nearly subconvexlike set-valued maps, we obtain scalarization theorems and Lagrange multiplier for Benson proper efficient solutions.