位置:成果数据库 > 期刊 > 期刊详情页
基于Boltzmann机制的双子代竞争差异演化算法
  • ISSN号:0469-5097
  • 期刊名称:《南京大学学报:自然科学版》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京交通大学计算机与信息技术学院,北京100044, [2]石家庄经济学院信息工程学院,石家庄050031
  • 相关基金:国家自然科学基金(60443003),北京交通大学科技基金(2003SZ003)
中文摘要:

差异演化(differential evolution,DE)是Storn和Price(Technical ReportTR-95-102,International Computer Institute,Berkely,1995)提出一种基于个体差异重组思想的演化算法,适合于求解连续空间的最优化问题.和其它演化算法相比,差异演化算法在求解非凸、多峰、非线性函数优化问题时表现出极强的稳健性,且在同样的精度要求下,算法收敛的速度快,但过早收敛和陷入局部最优是包括差异演化在内的演化算法面临的一个重要问题,提出一种基于Boltzmann生存机制的双子代竞争差异演化算法,为避免算法过早收敛,利用交叉操作生成两个新个体以增加群体多样性,然后与父代个体竞争形成子代个体.在选择操作中引入Boltzmann机制,以一定概率接受较差解,使算法能跳出局部最优,最终达到全局最优解.利用Brest et al.(Evdutionary COmputation,2006,10:646-657)中的21个测试函数,分别与标准DE算法、jDE算法进行性能比较.实验结果表明,该算法的平均性能值、最优性能值以及最优解质量都优于标准DE算法和jDE算法.

英文摘要:

Differential evolution (DE) that was developed by Storn and Price(Technical Report TR-95-102, International Computer Institute, Berkely, 1995) is one of the most successful evolution algorithms for the global continuous optimization problem. DE utilizes the mutation and recombination operators as search mechanisms, and the selection operator to direct the search towards the most promising regions of the solution space. Differential evolution algorithm is much more robust and was quicker convergence rate for nonlinear, multimodal functions than other evolution algorithms. However, as a particular instance of evolution algorithm, although it is simple and powerful for optimizing continuous functions, differential evolution algorithm is still faced with premature convergence and to get involved in local optimization problems just like other evolution algorithms. In this paper, adifferential evolution algorithm with double trial vectors based-on boltzmann mechanism (boDE) is presented. Two trial vectors are created by recombination to increase colony diversity and avoid premature convergence. These vectors compete with the parent individual to produce the next generation. Moreover, we introduce the boltzmann mechanism into the selection operator. This mechanism makes some not bad individuals accepted and makes the algorithm depart from the local optimization. The simulations have been finished for twenty-one benchmark functions with three evolution algorithms (SDE, jDE and boDE). Experimental results indicate that the proposed algorithm is efficient and feasible. It is superior to other related methods such as SDE, jDE both on the quality of solution and on the on-line and off-line performance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316