为支持向量机器(SVM ) 选择最佳的参数长是一个热研究话题。与光线的基础函数(RBF ) 为支持向量分类 / 回归(SVC/SVR ) 瞄准内核,我们总结不平的线惩罚参数和内核宽度统治,并且建议一个新奇线性搜索方法获得这二个最佳的参数。我们与阀值使用一个直接背景的方法设置 SVR 的 epsilon 参数。建议方法直接定位正确搜索领域,它极大地节省计算时间并且完成稳定的、高精确性。方法为 SVC 和 SVR 是更有竞争力的。没有任何调整,它为一个新数据集合易用、可行,自从设定不要求参数。
Selecting the optimal parameters for support vector machine (SVM) has long been a hot research topic. Aiming for support vector classification/regression (SVC/SVR) with the radial basis function (RBF) kernel, we summarize the rough line rule of the penalty parameter and kernel width, and propose a novel linear search method to obtain these two optimal parameters. We use a direct-setting method with thresholds to set the epsilon parameter of SVR. The proposed method directly locates the right search field, which greatly saves computing time and achieves a stable, high accuracy. The method is more competitive for both SVC and SVR. It is easy to use and feasible for a new data set without any adjustments, since it requires no parameters to set.