位置:成果数据库 > 期刊 > 期刊详情页
基于彩色编码光栅识别的织物疵点检测方法研究
  • 期刊名称:天津工业大学学报
  • 时间:2011.10.10
  • 页码:59-61+75
  • 分类:P412.16[天文地球—大气科学及气象学]
  • 作者机构:[1]天津工业大学电工电能新技术天津市重点实验室,天津300387, [2]天津工业大学电气工程与自动化学院,天津300387
  • 相关基金:国家自然科学基金资助项目(61078041)
  • 相关项目:基于视觉的织物疵点三维检测和三维识别原理研究
中文摘要:

为了改善风速时间序列的预测性能,提出了一种基于迟滞神经网络的预测方法.通过改变神经元激励函数的方式将迟滞特性引入神经网络中,以增强历史输入对当前响应的影响,从而提高有用信息的利用率,提高风速时间序列的预测性能;借助于相空间重构理论构造风速预测训练样本,采用梯度下降法对网络权值进行训练,利用遗传算法对迟滞参数进行优化.仿真结果表明:与传统神经网络及ARMA模型等方法相比,迟滞神经网络能够有效减小风速时间序列的预测误差,提高预测性能.

英文摘要:

In order to improve the prediction performance of the wind speed time series,a new prediction method based on hysteretic neural network is proposed.Hysteretic characteristic which can make history input change the current response of the neural network is brought into the neural network by changing activation function.Therefore,the utilization rate of useful information is enhanced,and the prediction performance of the wind speed time series can be improved.The training samples are reconstructed by the phase space reconstruction theory,and the connection weights of the network are trained by gradient descent method.And the hysteretic parameters are optimized by genetic algorithm.Simulation results show that the method can get better prediction performances than conventional neural network and ARMA model,and the prediction error can be reduced validly.

同期刊论文项目
期刊论文 20 会议论文 16 获奖 1 专利 9
同项目期刊论文