应用蒙特卡诺程序SRIM对He^+、Ar^+、Xe^+轰击SiC的微观过程进行了模拟。对不同能量(100-500eV)以及不同角度(0-85°)下He^+、Ar^+、Xe^+轰击SiC引起的溅射率、溅射原子分布、溅射原子能量以及入射离子在SiC中的分布情况进行了分析比较。结果表明对于原子量较小的He+入射SiC所引起的溅射主要是由进入表面之下的背散射离子产生的碰撞级联造成的,溅射原子具有较高的能量;对于原子量较大的Ar^+、Xe^+入射所引起的溅射主要是由进入SiC内部的离子直接产生的碰撞级联产生,溅射原子的能量相对较低。随着离子入射角度的逐渐增加,SiC的溅射率逐渐增加,在70°左右达到溅射峰值,随着入射角度的继续增加,入射离子的背散射不能使碰撞级联充分扩大,反冲原子的生成效率急剧降低,导致溅射率开始急剧下降。
In this paper, the monte-carlo(MC) code SRIM have been used to simulate the sputter yield ,distribution of sputter atoms ,energy of sputter atom of SiC for bombardment by He^+ ,Ar^+ , Xe^+ at differnect energy (100-500eV) and different angle(0-85°). The calculation results show that sputter mechanism for light ion like He+ is mainly caused by cascades collisions from backscatter ion under surface of SiC, and the heavy ion like Ar^+ , Xe^+ is caused by cascades collisions from backscatter atom in SiC. The sputter yield of SiC enhance and reach to the max value following the incidence angle of ion gradually increasing from 0 to about 70°. When the incidence angle exceed 70° will cause the degree of the cascades collisions become too small and lead to the sputter yield decrease intensively