位置:成果数据库 > 期刊 > 期刊详情页
基于宏微观重要性判别模型的时序多文档文摘
  • ISSN号:1000-1239
  • 期刊名称:计算机研究与发展
  • 时间:0
  • 页码:1184-1191
  • 语言:中文
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]哈尔滨工业大学计算机科学与技术学院信息检索研究室,哈尔滨150001
  • 相关基金:国家自然科学基金项目(60675034,60803093);国家“八六三”高技术研究发展计划基金项目(2008AA012144)
  • 相关项目:汉语语义角色标注方法研究
中文摘要:

时序多文档文摘是针对新闻领域跨时段的相关文档集,即系列新闻报道进行问题无关的、抽取式文摘.根据系列新闻报道不同细节层次的时序特性,提出一种基于宏微观重要性判别模型的内容选择方法.从宏观和微观角度挖掘信息随着时间进化的时序特性,以指导时序多文档文摘的内容选择.首先通过宏观模型确定重要的时间点,然后通过微观模型在重要的时间点选择重要的句子,从而更有效地获取文摘.实验证明该方法是有效的.

英文摘要:

Temporal multi-document summarization (TMDS) aims to capture the evolving information of relevant document sets across periods. Different from the traditional static multi-document summarization, it handles the dynamical collection relevant to a topic. How to resolve the key problems in the temporal context is a new challenge. This paper focuses on how to summarize the series news reports by a generic and extractive way. According to the temporal characteristics of series news reports at different levels of topical detail, a content selection method based on the macro-micro importance discriminative model is proposed. This method mines the temporal characteristics of series news reports from macro and micro views in order to provide the eue for content selection. Firstly, important time points are selected based on the macro importance discriminative model; then important sentences are selected by the micro importance discriminative model; and then these two models are integrated into a macro-micro importance discriminative model. Lastly, summary sentences are ordered chronologically. The experimental results on five groups of Chinese news corpus prove that this method is effective. It also shows that the macro and micro temporal characteristics of series news have the recursive property to some extent and macro coarse filtering helps to the content selection of TMDS.

同期刊论文项目
期刊论文 29 会议论文 12
期刊论文 22 会议论文 14 著作 2
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349