位置:成果数据库 > 期刊 > 期刊详情页
Stimulated Brillouin scattering evolution and suppression in an integrated stimulated thermal Rayleigh scattering-based fiber laser
  • ISSN号:2327-9125
  • 期刊名称:《光子学研究:英文版》
  • 时间:0
  • 分类:TN248[电子电信—物理电子学]
  • 作者机构:Center of Ultra-precision Optoelectronic Instrument,Harbin Institute of Technology, Key Laboratory of In-Fiber Integrated Optics,Ministry of Education,Harbin Engineering University, VI Service Network Co.,Ltd
  • 相关基金:National Natural Science Foundation of China(NSFC)(51575140,61377084);Science Fund for Distinguished Young Scholars of Harbin(RC2016JQ006007)
中文摘要:

The spectral purity of fiber lasers has become a critical issue in both optical sensing and communication fields.As a result of ultra-narrow intrinsic linewidth, stimulated thermal Rayleigh scattering(STRS) has presented special potential to compress the linewidth of fiber lasers. To suppress stimulated Brillouin scattering(SBS), the most dominant disturbance for STRS in optical fibers, a semi-quantitative estimation has been established to illuminate the mechanism of suppressing SBS in a periodic tapered fiber, and it agrees with experimental results. Finally, a linewidth compression device based on STRS is integrated into a single-longitudinal-mode ring-cavity fiber laser with secondary cavities, and its linewidth is verified to be 200 Hz through a self-heterodyne detecting and Voigt fitting method.

英文摘要:

The spectral purity of fiber lasers has become a critical issue in both optical sensing and communication fields. As a result of ultra-narrow intrinsic linewidth, stimulated thermal Rayleigh scattering (STRS) has presented special potential to compress the linewidth of fiber lasers. To suppress stimulated Brillouin scattering (SBS), the most dominant disturbance for STRS in optical fibers, a semi-quantitative estimation has been established to illuminate the mechanism of suppressing SBS in a periodic tapered fiber, and it agrees with experimental results. Finally, a linewidth compression device based on STRS is integrated into a single-longitudinal-mode ring-cavity fiber laser with secondary cavities, and its linewidth is verified to be 200 Hz through a self-heterodyne detecting and Voigt fitting method. (C) 2017 Chinese Laser Press

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光子学研究:英文版》
  • 主管单位:
  • 主办单位:中国科学院上海光学精密机械研究所
  • 主编:
  • 地址:上海市
  • 邮编:
  • 邮箱:
  • 电话:021-
  • 国际标准刊号:ISSN:2327-9125
  • 国内统一刊号:ISSN:31-2126/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:1