位置:成果数据库 > 期刊 > 期刊详情页
基于Markov逻辑网的事件表象统一方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]空军指挥学院,北京100097, [2]中国人民解放军31002部队,北京100000
  • 相关基金:国家自然科学基金资助项目(91024006)
中文摘要:

为解决Web数据集成中大量事件表象语句共指现实世界同一事件,导致数据冗余问题,提出一种基于Markov逻辑网的事件表象统一方法。该方法从共指事件表象集合中获得较准确详细的一条表象,作为统一的事件表象对应现实事件,为数据集成提供高质量数据;将事件表象使用八个维度的形式表示,训练Markov逻辑网从共指事件表象集合中推理出准确详细的维度内容,重新组合后形成一条事件表象。使用少量一阶谓词从维度内容、事件表象和数据源等多角度制定相应规则,通过推理解决数据不一致、不完整、不详细问题。实验结果表明基于Markov逻辑网的事件表象统一方法能获得较准确详细的统一事件表象。

英文摘要:

In order to solve the problem that a number of co-reference event mentions pointed to one real world happened event and lead to duplicated data in Web data integration, this paper proposed an event mention unification approach based on Markov logic networks. This approach obtained a unified event mention from the co-reference event mentions set. The unified event mention was accurate, detailed and it could point to the real event. This paper used eight dimensions to express an event mention, trained Markov logic networks to choose the accurate and detailed dimensions and reset these dimensions to combine a unified event mention. It used a small number of first-order predicates from different aspects such as dimension contents, event mentions and data source to make some appropriate formulas. The proposed approach resolved the problems of inconsistent data, incomplete data and imprecise data in co-reference event mentions. The experimental results show that the event mention unification approach based on Markov logic networks can obtain accurate and detailed unified event mention.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049