位置:成果数据库 > 期刊 > 期刊详情页
自适应GM—PHD滤波器在多目标追踪的应用
  • ISSN号:1006-7043
  • 期刊名称:《哈尔滨工程大学学报》
  • 时间:0
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(61175126,61371175);中央高校基本科研业务费专项资金资助项目(HEUCFZ1209);教育部博士点基金资助项目(20112304110009).
中文摘要:

针对PHD滤波器中先验概率初始化时,新生目标出现的位置不确定,且目标强度计算区域必须为整个监测区域,造成算法低效率等问题,将原始算法通过PHD滤波的扩展项在预测步骤与更新步骤对新生目标与存活目标进行区分,再通过每一次扫描得到的量测自适应更新得到目标新生强度,依据量测的驱动来避免对先验概率初始化假设的问题。利用OSPA函数作为算法性能监测标准,利用仿真数据和实测数据对改进的算法进行了验证。结果显示,利用量测来驱动新生目标强度函数,对新生目标与存活目标先进性判断,目标数目估计正确率达到97%,OSPA距离较GM-PHD算法下降50%。

英文摘要:

The problem is that when initializing prior probability in a probability hypothesis density (PHD) filter, the position of newborn targets is indefinite, and the targeting computations must search the whole monitoring do- main, noticably decreasing efficiency. This paper expands on the original PHD filter, to adaptively distinguish new- born targets from surviving targets in the prediction and updating steps. It then measures again, updating newborn target strength after each scan, thus avoiding the problem of prior probability parameter initialization. The optimal sub pattern assignment (OSPA) function was used to benchmark the performance of the algorithm, plus both simu- lated and tested data were used for validation. Using such measurements greatly enhances discrimination between newborn targets and surviving targets. The results show that estimation accuracy for the number of targets has in- creased to 97%, while the OSPA distance has decreased 50% than the original GM-PHD algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工程大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工程大学
  • 主编:杨士莪
  • 地址:哈尔滨市南岗区南通大街145号1号楼
  • 邮编:150001
  • 邮箱:xuebao@hrbeu.edu.cn
  • 电话:0451-82519357
  • 国际标准刊号:ISSN:1006-7043
  • 国内统一刊号:ISSN:23-1390/U
  • 邮发代号:14-111
  • 获奖情况:
  • 工信部科技期刊评比"优秀期刊奖",中国高校科技期刊评比"精品期刊奖","北方十佳期刊奖",首届黑龙江省政府出版奖--优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11823