位置:成果数据库 > 期刊 > 期刊详情页
Zinc finger factor ZNF121 is a MYC-interacting protein functionally affecting MYC and cell proliferation in epithelial cells
  • ISSN号:1673-8527
  • 期刊名称:《遗传学报:英文版》
  • 时间:0
  • 分类:Q51[生物学—生物化学] Q253[生物学—细胞生物学]
  • 作者机构:[1]Department of Genetics and Cell Biology, Nankai University College of Life Sciences, rianjin 300071, China, [2]Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, CA 30322, USA
  • 相关基金:Acknowledgments We thank Dr. Baotong Zhang for help in TCGA data analysis, and Drs, Dan Su and Xiao Wu for helpful discussions and technical guidance. This work was supported by the grant from the National Natural Science Foundation of China (No, 30625032).
中文摘要:

MYC is a potent oncoprotein that modulates multiple cellular processes including proliferation,apoptosis, differentiation, stemness, senescence, and migration. Functioning primarily as a transcriptional factor, MYC interacts with a large number of proteins, and identification and characterization of MYC-interacting proteins are important for understanding how MYC functions. In this study, we used different systems to demonstrate that a novel zinc finger transcription factor, ZNF121, physically interacted with MYC, and the interaction involved their N-terminal regions. Overexpression of ZNF121 increased, while its knockdown decreased, the expression of MYC in multiple epithelial cell lines, and MYC had similar effects on ZNF121 expression. An expression correlation was also detectable in a panel of epithelial cell lines and a cohort of human breast cancer tissues. Functionally, knockdown of ZNF121 in several breast epithelial cell lines attenuated the expressions of MYC and its target genes(e.g., EGR1,CDC2, and nucleolin) and slowed cell proliferation, accompanied by cell cycle arrest in the G1 phase and expression alteration of cell cycle regulators(cyclin D1, p14 and p21). Analysis of publically available databases showed that ZNF121 expression is up-regulated in human breast cancer, and the up-regulation significantly associates with worse patient survival in the luminal A subtype of breast cancer. These findings establish ZNF121 as a MYC-interacting protein with functional effects on MYC and cell proliferation.

英文摘要:

MYC is a potent oncoprotein that modulates multiple cellular processes including proliferation,apoptosis, differentiation, stemness, senescence, and migration. Functioning primarily as a transcriptional factor, MYC interacts with a large number of proteins, and identification and characterization of MYC-interacting proteins are important for understanding how MYC functions. In this study, we used different systems to demonstrate that a novel zinc finger transcription factor, ZNF121, physically interacted with MYC, and the interaction involved their N-terminal regions. Overexpression of ZNF121 increased, while its knockdown decreased, the expression of MYC in multiple epithelial cell lines, and MYC had similar effects on ZNF121 expression. An expression correlation was also detectable in a panel of epithelial cell lines and a cohort of human breast cancer tissues. Functionally, knockdown of ZNF121 in several breast epithelial cell lines attenuated the expressions of MYC and its target genes(e.g., EGR1,CDC2, and nucleolin) and slowed cell proliferation, accompanied by cell cycle arrest in the G1 phase and expression alteration of cell cycle regulators(cyclin D1, p14 and p21). Analysis of publically available databases showed that ZNF121 expression is up-regulated in human breast cancer, and the up-regulation significantly associates with worse patient survival in the luminal A subtype of breast cancer. These findings establish ZNF121 as a MYC-interacting protein with functional effects on MYC and cell proliferation.

同期刊论文项目
期刊论文 5
同项目期刊论文
期刊信息
  • 《遗传学报:英文版》
  • 北大核心期刊(2004版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院遗传与发育生物学研究所 中国遗传学会
  • 主编:薛勇彪
  • 地址:北京市安定门外大屯路中科院遗传发育所
  • 邮编:100101
  • 邮箱:ycxb@genetics.ac.cn
  • 电话:010-64807669
  • 国际标准刊号:ISSN:1673-8527
  • 国内统一刊号:ISSN:11-5450/R
  • 邮发代号:2-819
  • 获奖情况:
  • 1996年获中科院优秀期刊二等奖,1997年获全国优秀期刊三等奖,200年获中科院优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,荷兰文摘与引文数据库,荷兰医学文摘,美国生物医学检索系统,美国科学引文索引(扩展库),美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2000版)
  • 被引量:17519