在这份报纸, 16 参数 nonconforming 有一个精力直角的形状函数空格的有四面的元素为第四份订单的 discretization 被介绍在三种空间尺寸的椭圆形的部分微分操作符。最新构造的元素被证明为一个模型 biharmonic 方程会聚。
In this paper,the 16-parameter nonconforming tetrahedral element which has an energy-orthogonal shape function space is presented for the discretization of fourth order elliptic partial differential operators in three spatial dimensions.The newly constructed element is proved to be convergent for a model biharmonic equation.