位置:成果数据库 > 期刊 > 期刊详情页
Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy
  • ISSN号:1009-0630
  • 期刊名称:《等离子体科学与技术:英文版》
  • 时间:0
  • 分类:O159[理学—数学;理学—基础数学] TN24[电子电信—物理电子学]
  • 作者机构:School of Optic Electronics, Beijing Institute of Technology, Beijing 100081, China
  • 相关基金:supported by Beijing Natural Science Foundation of China(No.4132063)
中文摘要:

Supervised learning methods(eg.PLS-DA,SVM,etc.) have been widely used with laser-induced breakdown spectroscopy(LIBS) to classify materials;however,it may induce a low correct classification rate if a test sample type is not included in the training dataset.Unsupervised cluster analysis methods(hierarchical clustering analysis,K-means clustering analysis,and iterative self-organizing data analysis technique) are investigated in plastics classification based on the line intensities of LIBS emission in this paper.The results of hierarchical clustering analysis using four different similarity measuring methods(single linkage,complete linkage,unweighted pair-group average,and weighted pair-group average) are compared.In K-means clustering analysis,four kinds of choosing initial centers methods are applied in our case and their results are compared.The classification results of hierarchical clustering analysis,K-means clustering analysis,and ISODATA are analyzed.The experiment results demonstrated cluster analysis methods can be applied to plastics discrimination with LIBS.

英文摘要:

Supervised learning methods(eg.PLS-DA,SVM,etc.) have been widely used with laser-induced breakdown spectroscopy(LIBS) to classify materials;however,it may induce a low correct classification rate if a test sample type is not included in the training dataset.Unsupervised cluster analysis methods(hierarchical clustering analysis,K-means clustering analysis,and iterative self-organizing data analysis technique) are investigated in plastics classification based on the line intensities of LIBS emission in this paper.The results of hierarchical clustering analysis using four different similarity measuring methods(single linkage,complete linkage,unweighted pair-group average,and weighted pair-group average) are compared.In K-means clustering analysis,four kinds of choosing initial centers methods are applied in our case and their results are compared.The classification results of hierarchical clustering analysis,K-means clustering analysis,and ISODATA are analyzed.The experiment results demonstrated cluster analysis methods can be applied to plastics discrimination with LIBS.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《等离子体科学与技术:英文版》
  • 主管单位:中国科学院 中国科协
  • 主办单位:中国科学院等离子体物理研究所 中国力学学会
  • 主编:万元熙、谢纪康
  • 地址:合肥市1126信箱
  • 邮编:230031
  • 邮箱:pst@ipp.ac.cn
  • 电话:0551-5591617 5591388
  • 国际标准刊号:ISSN:1009-0630
  • 国内统一刊号:ISSN:34-1187/TL
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:89