位置:成果数据库 > 期刊 > 期刊详情页
A size-dependent composite laminated skew plate model based on a new modified couple stress theory
  • ISSN号:0894-9166
  • 期刊名称:《固体力学学报:英文版》
  • 时间:0
  • 分类:O[理学]
  • 作者机构:Key Laboratory of Liaoning Province for Composite Structural Analysis of Aerocraft and Simulation, Shenyang Aerospace University, Shenyang 110136, China
  • 相关基金:supported by the National Natural Sciences Foundation of China(No.11572204)
中文摘要:

在这研究,一个尺寸依赖者合成把压成薄片的斜 Mindlin 板模型基于一个新修改夫妇压力理论被建议。这个板模型能在设计力学被看作一个简化夫妇压力理论。管理方程和相关边界条件基于最小的势能的原则被导出。Rayleigh 夸耀方法被采用与不同厚度取向获得简单地支持的盘子的中心偏转的数字答案。建议模型获得的规范的中心偏转总是比那些小的数字结果表演在古典的获得了,即现在的模型能捕获微观结构的规模效果。而且,现象表明厚度取向将在微规模在合成把压成薄片的盘子的规模效果的大小上做重要影响。另外,厚斜板的现在的模型能被在 Bernoulli-Euler 横梁和材料 isotropy 采用假设基于修改夫妇压力理论堕落到 Kirchhoff 板的模型。

英文摘要:

In this study, a size-dependent composite laminated skew Mindlin plate model is proposed based on a new modified couple stress theory. This plate model can be viewed as a simplified couple stress theory in engineering mechanics. Governing equations and related boundary conditions are derived based on the principle of minimum potential energy. The Rayleigh–Ritz method is employed to obtain the numerical solutions of the center deflections of simply supported plates with different ply orientations. Numerical results show that the normalized center deflections obtained by the proposed model are always smaller than those obtained by the classical one, i.e. the present model can capture the scale effects of microstructures. Moreover, a phenomenon reveals that the ply orientation would make a significant influence on the magnitude of scale effects of composite laminated plates at micro scale. Additionally, the present model of thick skew plate can be degenerated to the model of Kirchhoff plate based on the modified couple stress theory by adopting the assumptions in Bernoulli–Euler beam and material isotropy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《固体力学学报:英文版》
  • 主管单位:
  • 主办单位:中国力学学会
  • 主编:郑泉水
  • 地址:武汉市珞喻路1037号华中科技大学南一楼西北508室
  • 邮编:430074
  • 邮箱:amss@mail.hust.edu.cn
  • 电话:027-87543737
  • 国际标准刊号:ISSN:0894-9166
  • 国内统一刊号:ISSN:42-1121/O3
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:133