位置:成果数据库 > 期刊 > 期刊详情页
基于深度学习的无参考立体图像质量评价
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TN911.73[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]宁波大学信息科学与工程学院,宁波315211
  • 相关基金:国家自然科学基金(61271021),宁波市自然科学基金(2012A610039)和宁波大学研究生科研创新基金资助课题
中文摘要:

先进的立体视频技术能给观众带来深度感和沉浸感,但也容易使人产生视觉疲劳,造成观看体验质量的下降,因此,如何对立体视频/图像的视觉舒适度进行有效评价是目前的研究难点。该文提出一种基于视觉重要区域的立体图像视觉舒适度客观评价模型,该模型主要包括3个部分:(1)利用图像显著图和视差图像得到立体图像视觉重要区域;(2)提取视觉重要区域的视差幅度特征、视差梯度边缘特征以及空间频率特征,作为反映立体图像视觉舒适度的感知特征信息;(3)通过支持向量回归建立特征信息与立体图像舒适度平均主观评分值的关系,预测得到立体图像视觉舒适度的客观评价值。实验结果表明,与现有的方法相比较,在相同的立体图像测试库上,采用该文提出的客观评价模型可以获得更好的评价性能。

英文摘要:

Stereo video technology provides depth perception and immersion visual experience, but it also makes people feel visual fatigue and causes the decrease of the experience quality. Therefore, how to evaluate the visual comfort of stereoscopic image/video effectively is still a research focus. In this paper, an objective visual comfort assessment metric based on visual important regions is proposed. First, the Visual Important Regions (VIR) are obtained from image saliency and disparity map information. Then, disparity amplitude, disparity gradient, and spatial frequency features are extracted and fused into a feature vector. Finally, the values of objective assessment are predicted by Support Vector Regression (SVR). Experimental results show that compared with existing methods, the proposed metric achieves higher consistency with subjective visual comfort assessment of stereoscopic images.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752