位置:成果数据库 > 期刊 > 期刊详情页
基于自适应步长的支持向量机快速训练算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安理工大学计算机科学与工程学院,西安710048, [2]西北工业大学计算机学院,西安710072
  • 相关基金:国家自然科学基金资助项目(50279041);陕西省自然科学基金资助项目(2005F07);陕西省教育厅科学技术研究计划资助项目(07JK339)
中文摘要:

支持向量机训练问题实质上是求解一个凸二次规划问题。当训练样本数量非常多时,常规训练算法便失去了学习能力。为了解决该问题并提高支持向量机训练速度,分析了支持向量机的本质特征,提出了一种基于自适应步长的支持向量机快速训练算法。在保证不损失训练精度的前提下,使训练速度有较大提高。在UCI标准数据集上进行的实验表明,该算法具有较好的性能,在一定程度上克服了常规支持向量机训练速度较慢的缺点、尤其在大规模训练集的情况下,采用该算法能够较大幅度地减小计算复杂度,提高训练速度。

英文摘要:

The training method of SVM is to solve the convex quadratic programming.When the amount of training samples is too large,this method will not work.In order to solve this problem and improve the speed of training SVM,this paper analyzed the nature characteristics of SVM and proposed a kind of algorithm for SVM.The speed of classification was much faster than that of conventional SVM in the condition that the correct rate did not decline.The experiments on the UCI database were done with this algorithm.The experimental results show that it has better performance and partly overcomes the flaw of standard SVM,which was slow in the process of classification.This algorithm can remarkably reduce the computation and increase the speed of classification, especially in the case of large number of support vectors.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049