广义严格对角占优矩阵在科学和工程实际中有着广泛的应用,因此研究其判定问题是很有必要的.根据广义Nekrasov矩阵与广义严格对角占优矩阵的等价关系,从矩阵的元素出发,通过构造递进系数,利用不等式的放缩技巧,提出了广义Nekrasov矩阵的2个判定条件,改进了近期的一些结果,并利用数值算例说明了其有效性.
Generalized strictly diagonally dominant matrices are widely applied to various areas of science and engineering ,so it is of vital importance to research the determination of the generalized strictly diag-onally dominant matrix .Because generalized Nekrasov matrix and generalized strictly diagonally domi-nant matrix are equivalent ,so by the method of selecting progressive coefficient ,two determined condi-tions for generalized Nekrasov matrices are given according to the properties of matrix elements and ine-quality scaling ,w hich improve some related results .Furthermore ,some numerical examples for the ef-fectiveness of the determined conditions are presented .