位置:成果数据库 > 期刊 > 期刊详情页
历史数据和强化学习相结合的低频轨迹数据匹配算法
  • ISSN号:1001-1595
  • 期刊名称:《测绘学报》
  • 时间:0
  • 分类:P208[天文地球—地图制图学与地理信息工程;天文地球—测绘科学与技术]
  • 作者机构:中国矿业大学(北京)地球科学与测绘工程学院,北京100083
  • 相关基金:国家自然科学基金(41671383)
作者: 孙文彬, 熊婷
中文摘要:

针对低频(采样间隔大于1min)轨迹数据匹配算法精度不高的问题,提出了一种基于强化学习和历史轨迹的匹配算法HMDP-Q,首先通过增量匹配算法提取历史路径作为历史参考经验库;根据历史参考经验库、最短路径和可达性筛选候选路径集;再将地图匹配过程建模成马尔科夫决策过程,利用轨迹点偏离道路距离和历史轨迹构建回报函数;然后借助强化学习算法求解马尔科夫决策过程的最大回报值,即轨迹与道路的最优匹配结果;最后应用某市浮动车轨迹数据进行试验。结果表明:本文算法能有效提高轨迹数据与道路匹配精度;本算法在1min低频采样间隔下轨迹匹配准确率达到了89.2%;采样频率为16min时,该算法匹配精度也能达到61.4%;与IVVM算法相比,HMDP-Q算法匹配精度和求解效率均优于IVVM算法,16min采样频率时本文算法轨迹匹配精度提高了26%。

英文摘要:

In order to improve the accuracy of low frequency (sampling interval greater than 1 minute) trajectory data matching algorithm, this paper proposed a novel matching algorithm termed HMDP-Q (History Markov Decision Processes Q-learning). The new algorithm is based on reinforced learning on historic trajectory. First, we extract historic trajectory data according to incremental matching algorithm as historical reference, and filter the trajectory dataset through the historic reference, the shortest trajectory and the reachability. Then we model the map matching process as the Markov decision process, and build up reward function using deflected distance between trajectory points and historic trajectories. The largest reward value of the Markov decision process was calculated by using the reinforced learning algorithm, which is the optimal matching result of trajectory and road. Finally we calibrate the algorithm by utilizing city's floating cars data to experiment. The results show that this algorithm can improve the accuracy between trajectory data and road. The matching accuracy is 89.2% within 1 minute low-frequency sampling interval, and the matching accuracy is 61.4% when the sampling frequency is 16 minutes. Compared with IVVM (Interactive Voting-based Map Matching), HMDP-Q has a higher matching accuracy and computing efficiency. Especially, when the sampling frequency is 16 minutes, HMDP-Q improves the matching accuracy by 26%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《测绘学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国测绘地理信息学会
  • 主编:杨元喜
  • 地址:北京市西城区三里河路50号
  • 邮编:100045
  • 邮箱:chxb@periodicals.net.cn
  • 电话:010-68531192
  • 国际标准刊号:ISSN:1001-1595
  • 国内统一刊号:ISSN:11-2089/P
  • 邮发代号:2-224
  • 获奖情况:
  • 中国科学技术协会精品科技期刊工程项目资助期刊(2...,中国国际影响力优秀学术期刊(2012年),第四届中国百种杰出学术期刊(2005年),科技部“中国精品科技期刊”(2008年、2011年、201...,中国科协优秀期刊,中国科协年度期刊内容和编校质量良好的13种期刊之...,中国测绘学会第一、第二届“全国优秀测绘期刊奖”...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),瑞典开放获取期刊指南,中国北大核心期刊(2000版)
  • 被引量:18477