由于残矿空间形态的复杂性,传统的剖切作图方法难以直观全面地掌握该类型矿体形态,进而难以精确指导采切工程的设计,而SURPAC软件采用三维建模方法,能很好地解决这一难题.以西石门铁矿堑沟底部结构诱导冒落法开采残矿为背景,采用SURPAC软件对堑沟内矿石量、金属量、品位等指标进行计算,将堑沟巷道所在的水平和垂直位置作为优化对象,经过对临界冒落跨度和现场工程技术条件的分析,得出堑沟巷道在两个方向上可布置的范围.依据该范围,设计了正交试验方案.以回采金属量和平均品位作为考核指标,对正交试验结果进行极差和方差分析,得出最优的堑沟巷道空间位置:堑沟巷道间距24 m,位于118 m水平.通过现场实施,取得理想的试验效果,实现了残矿的精细化开采.
Because of the complexity of the residual orebody space form,the traditional cutting drawing method is difficult to show the orebody form intuitively and comprehensively,leading to difficulties in cutting engineering design,while SURPAC uses a 3D modeling method to solve this problem. An induced caving method of residual orebodies was investigated with Xishimen Iron Mine as the background. The trench's ore quantity,metal quantity and grade were calculated by SURPAC. The horizontal and vertical positions of a trench tunnel were taken as the optimization objects,and the trench tunnel in both directions was laid out by analyzing the critical caving span and the field engineering and technical conditions. According to the scope,a scheme of orthogonal test was designed.Taking extraction metal quantity and average grade as the assessment indexes,the range analysis and variance analysis of orthogonal test were conducted to obtain the position of a trench tunnel: double trench tunnels have a separation distance of 24 m,with a horizontal level of 118 m. Along with the scene implement,ideal test results have been achieved for refinement caving.