位置:成果数据库 > 期刊 > 期刊详情页
Combustion simulation and key parameter optimization for opposite axial piston engine in small-scale
  • 时间:0
  • 分类:U469.11[机械工程—车辆工程;交通运输工程—载运工具运用工程;交通运输工程—道路与铁道工程] V234[航空宇航科学与技术—航空宇航推进理论与工程]
  • 作者机构:[1]College of Mechatronics Engineering and Automation,National University of Defense Technology, Changsha 410073, China
  • 相关基金:Projects(51475464,51175500) supported by the National Natural Science Foundation of China
中文摘要:

As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD(computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×104 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 k W, which fits the power need of the portable electric generators completely.

英文摘要:

As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD(computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×10^4 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 k W, which fits the power need of the portable electric generators completely.

同期刊论文项目
同项目期刊论文