在分析传统轴承故障诊断方法不足的基础上,提出了基于相关匹配的滚动轴承故障诊断新方法。该方法使用滚动轴承故障冲击的动力学模型建立故障脉冲的解析模型,并以该模型作为匹配原子,采用谱峭度、峭度、平滑系数及相关系数方法对匹配模型进行了全方位的优化。该方法在一维时间域上以周期性的最优化脉冲模型,对轴承振动信号中等时间间隔的故障脉冲进行最佳逼近,不仅解决了传统匹配追踪法的欠分解或过分解的问题,并能有效地提取出不同故障时间产生的故障脉冲,便于进一步的轴承故障的量化分析。仿真和试验结果验证了该方法的可行性与有效性。
By analyzing the shortcomings of the common method for bearing fault diagnosis,a new method based on correlation matching is proposed.With the kinetic model of rolling element bearing with fault,the analytic model for faulty impulse is set and used as the matching atom with parameters optimized by a series of indexes,such as spectrum kurtosis,kurtosis,smoothness index,and correlation coefficient.The optimal periodical impulse model is used to approach the periodic faulty impulse in the vibration signal of the bearing,which is processed in the time domain.In this method,the problem of over-or insufficient decomposition in standard matching pursuit is solved,and the faulty impulse is accurately extracted,which is helpful for the quantitative analysis of the faulty bearing.Both simulations and experiments indicate that the proposed method is effective for bearing fault diagnosis.