采集了中国科学院桃源农业生态试验站红壤坡地农田、自然恢复林和茶园土壤样品,采用末端限制性酶切片段长度多态性分析(T-RFLP)技术分析土壤细菌、古菌、氨氧化细菌(AOB)和氨氧化古菌(AOA)的多样性,采用好气培养法测定不同土壤的硝化势,研究不同土地利用方式对微生物多样性和硝化势的影响。结果表明:土壤AOB和AOA多样性指数差异不显著,且在3种不同土地利用方式中呈现相同的趋势,均为农田=茶园〉自然恢复林;通过RDA分析发现,不同利用方式造成土壤理化性状的改变是影响土壤AOA和AOB群落结构的主要原因;好气培养法测得不同土壤硝化势农田最高,茶园次之而自然恢复林最低;相关性分析显示,硝化势与细菌16S rRNA、AOA和AOB amoA基因多样性指数呈显著正相关,其中与AOA amoA基因关系最为密切;总体来说,红壤坡地不同利用方式改变了土壤细菌、古菌、AOA和AOB的多样性,土壤AOB和AOA积极参与了土壤的硝化过程,且AOA在氨氧化微生物群落生态功能中占有重要地位,AOA比AOB与硝化势的关系更为密切。
Soil microbial community plays a crucial role in ecological sustainabi lity in response to different land use patterns.In this paper,soil samples wer e collected from the cropland,naturally restored forestland,and tea garden on the red soil sloping land at the Taoyuan Agro-ecosystem Research Station (110° 72″E,28°52″N) under Chinese Academy of Sciences to study the effects of diff erent land use patterns on the soil microbial diversity and nitrification potent ial.T-RFLP technique was adopted to study the diversity of bacteria,ammonia- oxidizing bacteria (AOB),and ammonia-oxidizing archaea (AOA),and aerobic cult ure method was used to study the nitrification potential.Under the three land u se patterns,the diversity index of soil bacteria,AOB,and AOA showed the same variation trend,i.e.,cropland = tea garden naturally restored forest land (P0.05).RDA analysis showed that the variations of soil physical and chemical properties under different land use patterns determined the community structure of soil AOB and AOA.Cropland soil had the highest nitrification potential,foll owed by tea garden soil,and naturally restored forestland soil.There was a sig nificant positive correlation between the diversity index of soil bacteria,AOB,and AOA and the soil potential nitrification rate,especially for AOA,suggesti ng that AOA might play an important role in red soil nitrification.