位置:成果数据库 > 期刊 > 期刊详情页
基于时变自回归参数模型的滚动轴承智能故障诊断
  • ISSN号:1004-132X
  • 期刊名称:《中国机械工程》
  • 时间:0
  • 分类:TP206[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]湖南工业大学,株洲412008, [2]中南大学,长沙410083
  • 相关基金:国家自然科学基金资助项目(60774069); 中国博士后科学基金资助项目(20070410462); 省部级重点基金资助项目(9140A17051010BQ0104); 湖南省教育厅科技计划项目(07C005)
中文摘要:

轴承运行时的振动信号是典型的非线性非平稳时间序列,对其建立时变自回归参数模型,可以较好地表征轴承振动的非平稳特征。在对轴承振动信号时变自回归模型的时变参数进行大量实验分析研究的基础上,提取均值作为表征轴承运行状态的特征参数,并输入支持向量机分类器进行故障识别与分类,实现滚动轴承的智能故障诊断。实验结果表明,该故障诊断方法可以有效准确地识别滚动轴承的运行状态。

英文摘要:

The vibration signals of a bearing are typical nonlinear and non-stationary time series,and the non-stationary can be preferably characterized by establishing their time-varying autoregressive(TVAR)model.After adopting large numbers of experimental analysis to the parameters of the TVAR of the vibration signals,the means of time-varying autoregressive parameters can be extracted as the feature vectors of the bearing’s run state,and were input to support vector machine(SVM)classifier to recognize and classify the fault patterns,then an intelligent fault diagnosis was realized.The experimental results show the effectiveness and accuracy of the proposed approach for recognizing the states of rolling bearings.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国机械工程》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:董仕节
  • 地址:湖北工业大学772信箱
  • 邮编:430068
  • 邮箱:paper@cmemo.org.cn
  • 电话:027-87646802
  • 国际标准刊号:ISSN:1004-132X
  • 国内统一刊号:ISSN:42-1294/TH
  • 邮发代号:38-10
  • 获奖情况:
  • 1997年获中国科协期刊一等奖,第二届全国优秀科技...,机械行业优秀期刊一等奖,1999年获首届国家期刊奖,2001年获首届湖北十大名刊,中国期刊方阵“双高”期刊,2003第二届国家期刊奖提名奖,百种中国杰出学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:50788