位置:成果数据库 > 期刊 > 期刊详情页
结合神经网络方法和扩大训练基组构建新B3LYP泛函
  • 期刊名称:Acta Physico - Chimica Sinica
  • 时间:0
  • 页码:187-192
  • 分类:O641[理学—物理化学;理学—化学]
  • 作者机构:[1]华南理工大学化学与化工学院应用化学系,广州510640
  • 相关基金:国家自然科学基金(20975040)资助项目~~
  • 相关项目:基于统计方法的交换相关泛函
中文摘要:

神经网络方法成功地应用于修正密度泛函理论B3LYP方法中的三个参数(a0、ax和ac)以构建新B3LYP交换相关泛函.本文采用包含输入层、隐藏层和输出层的三层式神经网络结构.总电子数、多重度、偶极矩、动能、四极矩和零点能被选为物理描述符.296个能量数据被随机地分成两组,246个能量数据作为训练集以确定神经网络的最优结构和最优突触权重,50个能量数据作为测试集以测试神经网络的预测能力.修正后的三个参数觔0、觔x、觔c从输出层处得到,并用于计算体系的热化学性质如原子化能(AE)、电离势(IP)、质子亲合能(PA)、总原子能(TAE)和标准生成热(ΔfH苓).修正后的计算结果优于传统B3LYP/6-311+G(3df,2p)方法的计算结果.经过神经网络修正后,296个物种的总体均方根偏差从41.0 kJ.mol-1减少到14.2 kJ.mol-1.

英文摘要:

A neural network approach was used to correct three parameters(a0,ax,and ac) in the B3LYP method for constructing a new B3LYP exchange correlation functional.A three-layer architecture which consisted of an input layer,a hidden layer,and an output layer,was adopted in the neural network.The total number of electrons,spin multiplicity,dipole moment,kinetic energy,quadrupole moment,and zero point energy were chosen as the most important physical descriptors.In this work,296 energy values were randomly divided into two subsets: 246 energy values were used as the training set to determine the optimized structure of the neural network and the optimized synaptic weights;50 energy values were used as a testing set to test the prediction capability of our neural network.Three modified parameters 0,x,and c that were obtained from the output layer were used to calculate thermochemical data such as the atomic energy(AE),ionization potential(IP),proton affinity(PA),total atomic energy(TAE),and standard heat of formation(ΔfH).The new results obtained,based on the neural network approach,are much better than the results calculated using the conventional B3LYP/6-311+G(3df,2p) method.Upon the neural network correction,the overall root-mean-square(RMS) error for the 296 species decreased from 41.0 to 14.2 kJ.mol-1.

同期刊论文项目
同项目期刊论文