铁是机体必需微量元素,参与机体合成血红蛋白、肌红蛋白及多种酶的组成和功能发挥,对维持生命和健康至关重要。近四分之一的世界人口遭受铁缺乏或缺铁性贫血的威胁。此外,部分人群还存在铁过载问题,以脏器铁离子蓄积为主要病理改变的遗传性血色病,其在欧美发病率高达1/200,在中国也有报道。血色病后期多诱发肝脏、胰腺及心脏的功能衰退。铁过少或过多对健康都会造成严重危害,机体需要复杂而精密的调控体系维持铁稳态平衡。铁代谢主要包括小肠吸收、肝脏储存、血液转运、巨噬细胞再循环以及周身细胞利用。过去十多年是铁代谢研究的“黄金时期”,先后发现众多铁稳态代谢相关基因。该文综述了近年来哺乳动物铁代谢领域的研究进展,并对铁稳态代谢中存在的问题进行了初步讨论,为理解和进一步深入研究铁代谢分子机制提供参考。
Trace element iron is essential for nearly all living organisms. It is the key component of ironcontaining enzymes and proteins, which participate in many cellular biological processes. It is estimated that nearly one quarter of population worldwide has been suffered from anemia due to iron deficiency. In contrast, iron over- load induces a disease termed as Hemochromatosis, which the incidence is approximately 1/200 in Caucasians. Recently, the disease has also been reported in China. It is fatal if the disease progresses to late stage as the sign of heart, pancreas and liver failures. Therefore, maintenance of iron homeostasis is crucial. It is believed that iron is uptake by small intestine, stored in liver, transported in blood, recycled by macrophages, and finally utilized by cells to fulfill the functions. In last "Golden Decade", many novel iron metabolic genes have been cloned and functionally characterized to further understanding of regulation of iron metabolism and maintenance of iron homeostasis. However, more insights need to be learned considering the complexity of the processes. In this review, we summarize the recent findings in this field and discuss remaining questions, and provide our understanding towards future directions.