位置:成果数据库 > 期刊 > 期刊详情页
基于时间序列图挖掘的网络流量异常检测
  • ISSN号:1002-137X
  • 期刊名称:《计算机科学》
  • 时间:0
  • 分类:TP393.08[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]电子科技大学宽带光纤传输与通信网技术重点实验室,成都610054
  • 相关基金:本文受国家自然科学基金(60572092),教育部“新世纪优秀人才支持计划”(NCET07-0148)资助.
中文摘要:

网络流量异常检测要解决的核心问题之一是获得信息的全面性和流量信息描述的准确性。针对现有网络异常流量检测方法分析多时间序列的不足,提出了一种基于图挖掘的流量异常检测方法。该方法使用时间序列图准确、全面地描述用于流量异常检测的多时间序列的相互关系;通过对项集模式进行支持度计数,挖掘各种频繁项集模式,有利于对各种异常流量的有效检测;通过挖掘各项集之间的关系,引入了项集的权重系数,解决了流量异常检测的多时间序列相互关系的量化问题。仿真结果表明,该方法能有效地检测出网络流量异常,并且对DDos攻击的检测效果明显优于基于连续小波变换的检测方法。

英文摘要:

Comprehensive collection and accurate description of traffic information are core problems in network traffic anomaly detection. Aiming at the lack of traffic anomaly detection in analyzing multi time series,we proposed a network traffic anomaly detection method based on graph mining. Our method accurately and completely described the relationship among nulti-time series which are used in traffic anomaly detection by time-series graph. By mean of the support count of the patterns, our method mined all the frequent patterns, which is conducive to detecting many kinds of abnormal traffic effectively, through mining the relationship among all pattern sets, our method introduced weight coefficients of the pattern sets, which is able to solve relationship quantification issues of multi-time series in traffic anomaly detection. The simulation results show that the proposed method can effectively detect the network traffic anomaly and achieves a higher accuracy than the based CWT (Continuous Wavelet Transform) method in term of DDos attacks detection.

同期刊论文项目
期刊论文 26 会议论文 15
同项目期刊论文
期刊信息
  • 《计算机科学》
  • 北大核心期刊(2011版)
  • 主管单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主办单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主编:陈国良
  • 地址:重庆市渝北区洪湖西路18号
  • 邮编:401121
  • 邮箱:jsjkx12@163.com
  • 电话:023-63500828
  • 国际标准刊号:ISSN:1002-137X
  • 国内统一刊号:ISSN:50-1075/TP
  • 邮发代号:78-68
  • 获奖情况:
  • 2001年重庆市优秀期刊,2004年第三届重庆市优秀科技期刊,2005年重庆市优秀期刊编辑部,2010年第六届重庆市期刊综合质量考核"十佳科技期刊",2012年重庆市出版专项资金报刊资助项目(重庆市新...,2013年重庆市出版专项资金重点学术期刊资助项目(...,2014年重庆市出版专项资金期刊资助项目(重庆市文...,2015年"中国国际影响力优秀学术期刊"
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国乌利希期刊指南,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:41227