本文提出了一种生物医药领域词变体的识别策略。首先使用最小编辑距离算法和字符匹配算法从语料中分别获得特定目标词的形态学变体和缩略词,并将其作为候选词变体。本文采用系统相似模型获得每个词变体上下文语义的量化评价。本文的方法不需要任何语言学知识和精细加工的语料资源,实验表明,该方法可以在保证准确率的同时显著地提高词变体识别的召回率。
This paper presents an unsupervised learning strategy to identify the variants of biomedical terms. The minimum edit distance algorithm and a character matching algorithm are first applied to identify the morphological variants and the abbreviations as the candidate variants for a given term. The system similarity model is innovatively introduced to measure the semantic context for each candidate variant. This method requires no linguistic knowledge or labor-intensive corpora, and the experiment indicates its significant improvement in recall with a reasonable precision.