图的正常k-全染色是用k种颜色给图的顶点和边同时进行染色,使得相邻或者相关联的元素(顶点或边)染不同的染色.使得图G存在正常k-全染色的最小正整数惫,称为图G的全色数,用χ″(G)表示.证明了若图G是最大度△≥6且不含5-圈和相邻6-圈的平面图,则χ″(G)=△+1.
A proper k-total-coloring of a graph G is a coloring of V(G) ∪ E(G) using k-colors such that no two adjacent or incident elements receive the same color.The total chromatic number χ″ (G) of G is the smallest integer such that G has a k-total-coloring.It's proved that if G is a planar gragh with maximum degree at least 6 and without 5-cycles and intersecting 6-cycles,then χ″(G)=△+1.