位置:成果数据库 > 期刊 > 期刊详情页
基于自适应动量因子的区间神经网络建模方法
  • ISSN号:0490-6756
  • 期刊名称:《四川大学学报:自然科学版》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]重庆科技学院电气与信息工程学院,重庆401331, [2]重庆大学数学与统计学院,重庆401331
  • 相关基金:国家自然科学基金(51375520,51374268,51404051,61174015);重庆市重大应用技术开发项目(cstc2013yykfC0034);重庆市优秀人才科技训练计划(cstc2013kjre-qnrc40008);重庆市高校创新团队项目(KJTD201324);重庆市高校优秀成果转化项目(KJZH14218);重庆市基础科学与前沿技术研究(cstc2015jcyiBX0099);重庆科技学院研究生科技创新计划项目基金(YKJCX1620402)
中文摘要:

区间神经网络建模是区间控制的核心部分,也是提高系统鲁棒性的重要方法.针对区间神经网络算法收敛速度慢的问题,提出一种自适应动量因子算法.算法利用区间运算建立输入与输出数据的映射模型,通过引入具有自适应特性的动量项,使用最速下降法对动量项进行自适应更新,在加快系统收敛速度的同时,克服系统稳态误差大和容易陷入局部最小值的弊端.典型算例实验表明:区间神经网络能够较为精确地建立区间网络模型,自适应动量因子算法提高了区间神经网络整体性能.

英文摘要:

The modeling of interval neural network is not only a component of interval control, but also an important role to improve the robust of systems. An adaptive algorithm of momentum factor is pro- posed to solve the problem of slow convergence speed on the interval neural network. In this paper, interval calculation method is used to establish the mapping model of input and output variables. By introducing a momentum term with adaptive characteristics, the steepest descent algorithm is applied to update the adaptive momentum factor. Compared with the traditional method, this method not only accel- erates the convergence speed, but also overcome the disadvantages of the system steady state error and easily to fall into local minimum. According to the nonlinear experiments, interval neural networks are able to establish the zone models, and the algorithm of adaptive momentum factor increase the overall performance of the network. Classic bench mark experiments show that our work can more accurate to establish interval network model, while introducing of adaptive momentum factor algorithm also can im- prove the overall performance of the interval neural network.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《四川大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:四川大学
  • 主编:刘应明
  • 地址:成都九眼桥望江路29号
  • 邮编:610064
  • 邮箱:
  • 电话:028-85410393 85412393
  • 国际标准刊号:ISSN:0490-6756
  • 国内统一刊号:ISSN:51-1595/N
  • 邮发代号:62-127
  • 获奖情况:
  • 国家“双效”期刊,四川省十佳科技期刊,教育部全国高校优秀学报二等奖(1995,1999),四川省科技优秀期刊一等奖(1996,2000)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10542