位置:成果数据库 > 期刊 > 期刊详情页
最小支持向量机在系统逆动力学辨识与控制中的应用
  • ISSN号:0258-8013
  • 期刊名称:《中国电机工程学报》
  • 时间:0
  • 分类:TK122[动力工程及工程热物理—工程热物理;动力工程及工程热物理—热能工程]
  • 作者机构:[1]重庆大学动力工程学院,重庆市沙坪坝区400044
  • 相关基金:国家自然科学基金项目(50776103).
中文摘要:

为克服支持向量机(support vector machine,SVM)在线辨识过程需要较大的内存开销的问题,该文将递推最小二乘法(recursive least square,RLS)与最小二乘支持向量机(least squares support vector machine,LS-SVM)回归相结合,利用RLS在线调整支持向量机的权向量和偏移量,实现了系统逆动力学模型的在线辨识。在获得逆动力学模型的基础上,设计了一种基于逆动力学递推最小二乘支持向量机的控制算法,利用RLS在线调整控制器参数。过热汽温辨识和控制的仿真结果表明,辨识出的逆动力学模型具有较高的精度,所设计的控制器能获得较好的控制性能和有较强的适应能力。

英文摘要:

To overcome the large memory expense in the process of on-line identification by utilizing support vector machine(SVM), least squares support vector machine (LS-SVM) was combined with recursive least square(RLS), the weigh vector and bias were adjusted on-line by RLS algorithm, and on-line identification of inverse dynamic model of system was realized. Based on the inverse dynamic model acquired, a control algorithm based on recursive least squares support vector machine (RLS-SVM) of inverse dynamics was designed. The parameters of controller were adjusted on-line by RLS algorithm. The simulations on superheated steam temperature identification and control system show that the inverse dynamic model identified has high precision and the controller designed has good control performance and strong adaptability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国电机工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国电机工程学会
  • 主编:张文涛
  • 地址:北京清河小营东路15号 中国电力科学研究院内
  • 邮编:100192
  • 邮箱:pcsee@epri.sgcc.com.cn
  • 电话:010-82812536 82812534 82812545
  • 国际标准刊号:ISSN:0258-8013
  • 国内统一刊号:ISSN:11-2107/TM
  • 邮发代号:82-327
  • 获奖情况:
  • 1992年全国优秀科技期刊三等奖,1992年中国科协优秀科技期刊二等奖,1996年中国科协优秀科技期刊二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:98970