位置:成果数据库 > 期刊 > 期刊详情页
一种基于粒子群优化的成对组合测试算法框架
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京大学计算机软件新技术国家重点实验室,江苏南京210093, [2]南京大学计算机科学与技术系,江苏南京210093
  • 相关基金:国家自然科学基金(60873027);国家高技术研究发展计划(863)(2006AA012177);国家重点基础研究发展计划(973)(2009CB320705)
中文摘要:

提出一种基于粒子群优化的成对组合测试用例集生成算法框架.在生成测试用例时,该框架采用粒子群优化尝试生成强组合覆盖能力的测试用例,并研究了搜索空间、适应值函数和启发式的合理设定;在构造组合测试用例集时,以上述测试用例生成算法为基础,提出两种策略:一种基于one—test-at-a—time,另一种基于类IPO.编程实现该算法框架,并通过实证研究分析了算法框架中不同设定对组合测试用例集规模的影响;最后,与现有的经典方法在组合测试用例集生成规模和算法执行时间上进行了比较.最终结果表明,该算法具有竞争力.

英文摘要:

This paper proposes a framework of particle swarm optimization (PSO) based pairwise testing. To systematically build pairwise test suites, two different PSO based strategies are proposed. One strategy takes on a one-test-at-a-time approach and the other takes on an IPO-like approach. In these two different strategies, PSO is used to complete the construction of a single test and research on how to formulate the search space, define the fitness function, and set some heuristic settings. To verify the effectiveness of this approach, these algorithms are implemented and some typical instances have been chosen. In this empirical study, the paper analyzes the impact factors of this framework and compares this approach to other well-known approaches in test suite size and generation time. Final empirical results show the competitiveness of this approach.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609