研究了二维正方形各向异性光晶格中次近邻跃迁所引发的冷费米子气体的拓扑量子相变。详细讨论了系统能隙为零的条件和以TKNN数为标志的各类量子拓扑相。当次近邻之间的跃迁强度t′小于某一个临界值tc′时,体系中只存在非阿贝尔相,当t′〉tc′时,系统中将产生阿贝尔相。对一个具有开边界的二维体系,文章研究了其在不同量子相下的能谱结构,并对Majorana零模及其与TKNN数之间的关系做了相应的讨论。最近的一些研究表明,当对光晶格采取一种周期性的晃动时,次近邻之间的跃迁强度可以在一个很大的范围内变化,这使得我们的模型及结论有望在实验中得到实现和验证。
We study the effect of the neat-nearest-neighbour(NNN)hopping on the topological phase transitions of cold Fermi gases in a two-dimensional square anisotropic optical lattice.In terms of the TKNN number,we investigate the topological nature and the topological phase transitions in detail.For NNN hopping,there exists a critical value and quantum phase transition emerges at this point.By numerically diagonalizing the Hamiltonian in the real space,the corresponding edge states and Majorana zero modes are discussed.